Analysis of Scalar Fields over Point Cloud Data

Frédéric Chazal 1 Leonidas J. Guibas 2 Steve Y. Oudot 1, * Primoz Skraba 2
* Auteur correspondant
1 GEOMETRICA - Geometric computing
CRISAM - Inria Sophia Antipolis - Méditerranée , Inria Saclay - Ile de France
Abstract : Given a real-valued function f defined over some metric space X, is it possible to recover some structural information about f from the sole information of its values at a finite set L of sample points, whose pairwise distances in X are given? We provide a positive answer to this question. More precisely, taking advantage of recent advances on the front of stability for persistence diagrams, we introduce a novel algebraic construction, based on a pair of nested families of simplicial complexes built on top of the point cloud L, from which the persistence diagram of f can be faithfully approximated. We derive from this construction a series of algorithms for the analysis of scalar fields from point cloud data. These algorithms are simple and easy to implement, they have reasonable complexities, and they come with theoretical guarantees. To illustrate the genericity and practicality of the approach, we also present some experimental results obtained in various applications, ranging from clustering to sensor networks.
Type de document :
[Research Report] RR-6576, INRIA. 2008
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger
Contributeur : Steve Oudot <>
Soumis le : mardi 21 avril 2009 - 14:49:50
Dernière modification le : vendredi 23 février 2018 - 14:20:08
Document(s) archivé(s) le : mercredi 29 mars 2017 - 16:41:45


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00294591, version 3



Frédéric Chazal, Leonidas J. Guibas, Steve Y. Oudot, Primoz Skraba. Analysis of Scalar Fields over Point Cloud Data. [Research Report] RR-6576, INRIA. 2008. 〈inria-00294591v3〉



Consultations de la notice


Téléchargements de fichiers