Conditional stability for ill-posed elliptic Cauchy problems : the case of $C^{1,1}$ domains (part I)

Laurent Bourgeois 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : This paper is devoted to a conditional stability estimate related to the ill-posed Cauchy problems for the Laplace's equation in domains with $C^{1,1}$ boundary. It is an extension of an earlier result for domains of class $C^\infty$. Our estimate is established by using a global Carleman estimate near the boundary in which the exponential weight depends on the distance function to the boundary. Furthermore, we prove that this stability estimate is nearly optimal and induces a nearly optimal convergence rate for the method of quasi-reversibility to solve the ill-posed Cauchy problems.
Type de document :
Rapport
[Research Report] RR-6585, INRIA. 2008
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00302354
Contributeur : Laurent Bourgeois <>
Soumis le : lundi 21 juillet 2008 - 14:12:08
Dernière modification le : jeudi 11 janvier 2018 - 06:20:23
Document(s) archivé(s) le : lundi 31 mai 2010 - 23:14:42

Fichier

RR-6585.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00302354, version 1

Citation

Laurent Bourgeois. Conditional stability for ill-posed elliptic Cauchy problems : the case of $C^{1,1}$ domains (part I). [Research Report] RR-6585, INRIA. 2008. 〈inria-00302354〉

Partager

Métriques

Consultations de la notice

264

Téléchargements de fichiers

123