Learning nonlinear image manifolds by global alignment of local linear models

Jakob Verbeek 1
1 LEAR - Learning and recognition in vision
GRAVIR - IMAG - Graphisme, Vision et Robotique, Inria Grenoble - Rhône-Alpes, CNRS - Centre National de la Recherche Scientifique : FR71
Abstract : Appearance based methods, based on statistical models of the pixels values in an image (region) rather than geometrical object models, are increasingly popular in computer vision. In many applications the number of degrees of freedom (DOF) in the image generating process is much lower than the number of pixels in the image. If there is a smooth function that maps the DOF to the pixel values, then the images are confined to a low dimensional manifold embedded in the image space. We propose a method based on probabilistic mixtures of factor analyzers to (i) model the density of images sampled from such manifolds and (ii) recover global parameterizations of the manifold. A globally non-linear probabilistic two-way mapping between coordinates on the manifold and images is obtained by combining several, locally valid, linear mappings. We propose a parameter estimation scheme that improves upon an existing scheme, and experimentally compare the presented approach to self-organizing maps, generative topographic mapping, and mixtures of factor analyzers. In addition, we show that the approach also applies to find mappings between different embeddings of the same manifold.
Type de document :
Article dans une revue
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2006, 28 (8), pp.1236--1250. 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1642659〉. 〈10.1109/TPAMI.2006.166〉
Liste complète des métadonnées

Littérature citée [51 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/inria-00321131
Contributeur : Jakob Verbeek <>
Soumis le : vendredi 8 avril 2011 - 14:22:06
Dernière modification le : jeudi 11 janvier 2018 - 06:20:04
Document(s) archivé(s) le : jeudi 8 novembre 2012 - 15:46:11

Fichiers

verbeek05pami_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

IMAG | INRIA | UGA

Citation

Jakob Verbeek. Learning nonlinear image manifolds by global alignment of local linear models. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2006, 28 (8), pp.1236--1250. 〈http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1642659〉. 〈10.1109/TPAMI.2006.166〉. 〈inria-00321131v2〉

Partager

Métriques

Consultations de la notice

389

Téléchargements de fichiers

459