The Back and Forth Nudging algorithm for data assimilation problems: theoretical results on transport equations

Didier Auroux 1, 2, 3 Maëlle Nodet 2
2 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : In this paper, we consider the back and forth nudging algorithm that has been introduced for data assimilation purposes. It consists of iteratively and alternately solving forward and backward in time the model equation, with a feedback term to the observations. We consider the case of 1-dimensional transport equations, either viscous or inviscid, linear or not (Bürgers' equation). Our aim is to prove some theoretical results on the convergence, and convergence properties, of this algorithm. We show that for non viscous equations (both linear transport and Burgers), the convergence of the algorithm holds under observability conditions. Convergence can also be proven for viscous linear transport equations under some strong hypothesis, but not for viscous Burgers' equation. Moreover, the convergence rate is always exponential in time. We also notice that the forward and backward system of equations is well posed when no nudging term is considered.
Type de document :
Article dans une revue
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2012, 18 (2), pp.318-342. 〈10.1051/cocv/2011004〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00325305
Contributeur : Maëlle Nodet <>
Soumis le : dimanche 28 septembre 2008 - 11:37:50
Dernière modification le : mardi 11 septembre 2018 - 15:18:14
Document(s) archivé(s) le : vendredi 4 juin 2010 - 11:51:50

Fichiers

BFN-burgers-thms-HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Didier Auroux, Maëlle Nodet. The Back and Forth Nudging algorithm for data assimilation problems: theoretical results on transport equations. ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2012, 18 (2), pp.318-342. 〈10.1051/cocv/2011004〉. 〈inria-00325305〉

Partager

Métriques

Consultations de la notice

785

Téléchargements de fichiers

320