Computing Largest Circles Separating Two Sets of Segments

Abstract : A circle C separates two planar sets if it encloses one of the sets and its open interior disk does not meet the other set. A separating circle is a largest one if it cannot be locally increased while still separating the two given sets. An Theta(n log n) optimal algorithm is proposed to find all largest circles separating two given sets of line segments when line segments are allowed to meet only at their endpoints. In the general case, when line segments may intersect Omega(n^2) times, our algorithm can be adapted to work in O(n alpha(n) log n) time and O(n alpha(n)) space, where alpha(n) represents the extremely slowly growing inverse of the Ackermann function.
Type de document :
Article dans une revue
International Journal of Computational Geometry and Applications, World Scientific Publishing, 2000, 10, pp.41--54
Liste complète des métadonnées

https://hal.inria.fr/inria-00338701
Contributeur : Olivier Devillers <>
Soumis le : vendredi 14 novembre 2008 - 09:43:24
Dernière modification le : jeudi 11 janvier 2018 - 17:00:45
Document(s) archivé(s) le : lundi 7 juin 2010 - 21:25:06

Fichier

bcduy-clcst.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00338701, version 1

Collections

Citation

Jean-Daniel Boissonnat, Jurek Czyzowicz, Olivier Devillers, Jorge Urrutia, Mariette Yvinec. Computing Largest Circles Separating Two Sets of Segments. International Journal of Computational Geometry and Applications, World Scientific Publishing, 2000, 10, pp.41--54. 〈inria-00338701〉

Partager

Métriques

Consultations de la notice

395

Téléchargements de fichiers

501