A Forward semi-Lagrangian Method for the Numerical Solution of the Vlasov Equation

Nicolas Crouseilles 1, 2, * Thomas Respaud 2, 1 Eric Sonnendrücker 2, 1
* Auteur correspondant
2 CALVI - Scientific computation and visualization
IRMA - Institut de Recherche Mathématique Avancée, LSIIT - Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection, Inria Nancy - Grand Est, IECL - Institut Élie Cartan de Lorraine
Abstract : This work deals with the numerical solution of the Vlasov equation. This equation gives a kinetic description of the evolution of a plasma, and is coupled with Poisson's equation for the computation of the self-consistent electric field. The coupled model is non linear. A new semi-Lagrangian method, based on forward integration of the characteristics, is developed. The distribution function is updated on an eulerian grid, and the pseudo-particles located on the mesh's nodes follow the characteristics of the equation forward for one time step, and are deposited on the 16 nearest nodes. This is an explicit way of solving the Vlasov equation on a grid of the phase space, which makes it easier to develop high order time schemes than the backward method.
Type de document :
Article dans une revue
Computer Physics Communications, Elsevier, 2009, 180 (10), pp.1730-1745. 〈10.1016/j.cpc.2009.04.024〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00339543
Contributeur : Eric Sonnendrücker <>
Soumis le : mardi 18 novembre 2008 - 11:05:58
Dernière modification le : mercredi 14 mars 2018 - 16:48:08
Document(s) archivé(s) le : lundi 7 juin 2010 - 21:40:04

Fichiers

RR-6727.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nicolas Crouseilles, Thomas Respaud, Eric Sonnendrücker. A Forward semi-Lagrangian Method for the Numerical Solution of the Vlasov Equation. Computer Physics Communications, Elsevier, 2009, 180 (10), pp.1730-1745. 〈10.1016/j.cpc.2009.04.024〉. 〈inria-00339543〉

Partager

Métriques

Consultations de la notice

526

Téléchargements de fichiers

244