A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity

Abstract : In this note we propose a finite element method for incompressible (or compressible) elasticity problems with discontinuous modulus of elasticity (or, if compressible, Poisson's ratio). The problem is written on mixed form using P1–continuous displacements and the space of piecewise P0 pressures, leading to the possibility of eliminating the pressure beforehand in the compressible case. In the incompressible case, the method is augmented by a stabilization term, penalizing the pressure jumps. We show a priori error estimates under certain regularity hypothesis. In particular we prove that if the exact solution is sufficiently smooth in each subdomain then the convergence order is optimal.
Type de document :
Rapport
[Research Report] 2008
Liste complète des métadonnées

Littérature citée [10 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00341737
Contributeur : Vincent Perrier <>
Soumis le : mardi 25 novembre 2008 - 18:15:28
Dernière modification le : jeudi 11 janvier 2018 - 06:22:32
Document(s) archivé(s) le : jeudi 11 octobre 2012 - 12:06:25

Fichier

Stokes_unfit_20_11_2008.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00341737, version 1

Collections

Citation

R. Becker, Erik Burman, Peter Hansbo. A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. [Research Report] 2008. 〈inria-00341737〉

Partager

Métriques

Consultations de la notice

260

Téléchargements de fichiers

287