Pseudo-conforming polynomial finite elements on quadrilaterals

Eric Dubach 1 Robert Luce 1, 2 Jean-Marie Thomas 1
2 CONCHA - Complex Flow Simulation Codes based on High-order and Adaptive methods
Inria Bordeaux - Sud-Ouest, UPPA - Université de Pau et des Pays de l'Adour, CNRS - Centre National de la Recherche Scientifique : UMR5142
Abstract : The aim of this paper is to present a new class of finite elements on quadrilaterals where the approximation is polynomial on each element K. In the case of Lagrange finite elements, the degrees of freedom are the values at the vertices and in the case of mixed finite elements the degrees of freedom are the mean values of the fluxes on each side. The degres of freedom are the same as those of classical finite elements. However, in general, with this kind of finite elements,the resolution of second order elliptic problems leads to non conforming approximations. In the particular case when the finite elements are parallelograms, we can notice that our method is conform and coincides with the classical finite elements on structured meshes. First, a motivation for the study of the Pseudo-conforming polynomial finite elements method is given, and the convergence of the method established. Then, numerical results that confirm the error estimates, predicted by the theory, are presented.
Type de document :
Article dans une revue
International Journal of Computer Mathematics, Taylor & Francis, 2008
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00342656
Contributeur : Vincent Perrier <>
Soumis le : jeudi 27 novembre 2008 - 23:58:56
Dernière modification le : jeudi 11 janvier 2018 - 06:22:32
Document(s) archivé(s) le : jeudi 11 octobre 2012 - 12:10:17

Fichier

CMMSE2008_luce_V2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00342656, version 1

Collections

Citation

Eric Dubach, Robert Luce, Jean-Marie Thomas. Pseudo-conforming polynomial finite elements on quadrilaterals. International Journal of Computer Mathematics, Taylor & Francis, 2008. 〈inria-00342656〉

Partager

Métriques

Consultations de la notice

217

Téléchargements de fichiers

193