Symmetric tensor decomposition

Jérôme Brachat 1 Pierre Comon 2 Bernard Mourrain 1 Elias P. Tsigaridas 1
1 GALAAD - Geometry, algebra, algorithms
CRISAM - Inria Sophia Antipolis - Méditerranée , UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR6621
Abstract : We present an algorithm for decomposing a symmetric tensor, of dimension n and order d as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables of total degree d as a sum of powers of linear forms (Waring's problem), incidence properties on secant varieties of the Veronese Variety and the representation of linear forms as a linear combination of evaluations at distinct points. Then we reformulate Sylvester's approach from the dual point of view. Exploiting this duality, we propose necessary and sufficient conditions for the existence of such a decomposition of a given rank, using the properties of Hankel (and quasi-Hankel) matrices, derived from multivariate polynomials and normal form computations. This leads to the resolution of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with these Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions, and for detecting the rank.
Type de document :
Article dans une revue
Linear Algebra and Applications, Elsevier - Academic Press, 2010, 433 (11-12), pp.1851-1872
Liste complète des métadonnées

Littérature citée [54 références]  Voir  Masquer  Télécharger
Contributeur : Bernard Mourrain <>
Soumis le : dimanche 25 janvier 2009 - 19:40:53
Dernière modification le : lundi 7 février 2011 - 11:28:50
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 11:42:59


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00355713, version 2
  • ARXIV : 0901.3706



Jérôme Brachat, Pierre Comon, Bernard Mourrain, Elias P. Tsigaridas. Symmetric tensor decomposition. Linear Algebra and Applications, Elsevier - Academic Press, 2010, 433 (11-12), pp.1851-1872. 〈inria-00355713v2〉



Consultations de
la notice


Téléchargements du document