Local Appearance Knowledge and Shape Variation Models for Muscle Segmentation

Abstract : In this report, we present a novel prior knowledge representation of shape variation using diffusion wavelets and applied for medical image segmentation. One of the major advantage of our approach is that it can reflect arbitrary and continuous interdependencies in the training data. In contrast to state-of-the-art methods our framework during the learning stage optimizes the coefficients as well as the number and the position of landmarks using geometric (reconstructed surface) constraints. Saliency is encoded in the model and segmentation is expressed through the extraction of the corresponding features in a new data-set. The resulting paradigm supports hierarchies both in the model and the search space, can encode complex geometric and photometric dependencies of the structure of interest, and can deal with arbitrary topologies. In another hand, our report deals with a different model search methodology where we apply an approach related to active feature models; the location of landmarks is updated iteratively, using local features, and the canonical correlation analysis. We report promising results on two challenging medical data sets, that illustrate the potential of our method.
Type de document :
Rapport
[Research Report] RR-6821, INRIA. 2009
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00362636
Contributeur : Salma Essafi <>
Soumis le : vendredi 6 mars 2009 - 17:45:18
Dernière modification le : vendredi 29 juin 2018 - 12:12:25
Document(s) archivé(s) le : jeudi 23 septembre 2010 - 17:16:36

Fichier

RR_SalmaEssafi.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00362636, version 3

Collections

Citation

Salma Essafi, Georg Langs, Jean-Francois Deux, Guillaume Bassez, Alain Rahmouni, et al.. Local Appearance Knowledge and Shape Variation Models for Muscle Segmentation. [Research Report] RR-6821, INRIA. 2009. 〈inria-00362636v3〉

Partager

Métriques

Consultations de la notice

309

Téléchargements de fichiers

168