Towards very high-order accurate schemes for unsteady convection problems on unstructured meshes.

Abstract : Summary: We construct several high-order residual-distribution methods for two-dimensional unsteady scalar advection on triangular unstructured meshes. For the first class of methods, we interpolate the solution in the space-time element. We start by calculating the first-order node residuals, then we calculate the high-order cell residual, and modify the first-order residuals to obtain high accuracy. For the second class of methods, we interpolate the solution in space only, and use high-order finite difference approximation for the time derivative. In doing so, we arrive at a multistep residual-distribution scheme. We illustrate the performance of both methods on several standard test problems.
Type de document :
Article dans une revue
International Journal for Numerical Methods in Fluids, Wiley, 2005, 47 (8-9), pp.679-691. 〈10.1002/fld.870〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00402652
Contributeur : Rémi Abgrall <>
Soumis le : mardi 7 juillet 2009 - 22:43:11
Dernière modification le : jeudi 11 janvier 2018 - 06:21:22

Lien texte intégral

Identifiants

Collections

Citation

R. Abgrall, N. Andrianov, M. Mezine. Towards very high-order accurate schemes for unsteady convection problems on unstructured meshes.. International Journal for Numerical Methods in Fluids, Wiley, 2005, 47 (8-9), pp.679-691. 〈10.1002/fld.870〉. 〈inria-00402652〉

Partager

Métriques

Consultations de la notice

69