Benchmarking the (1+1)-CMA-ES on the BBOB-2009 Noisy Testbed - Archive ouverte HAL Access content directly
Conference Papers Year : 2009

Benchmarking the (1+1)-CMA-ES on the BBOB-2009 Noisy Testbed

(1, 2) , (1, 2)
1
2

Abstract

We benchmark an independent-restart-(1+1)-CMA-ES on the BBOB-2009 noisy testbed. The (1+1)-CMA-ES is an adaptive stochastic algorithm for the optimization of objective functions defined on a continuous search space in a black-box scenario. The maximum number of function evaluations used here equals $10^{4}$ times the dimension of the search space. The algorithm could only solve $4$ functions with moderate noise in $5$-D and $2$ functions in $20$-D.
Fichier principal
Vignette du fichier
Auger-wk2040.pdf (384.72 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

inria-00430518 , version 1 (08-11-2009)

Identifiers

  • HAL Id : inria-00430518 , version 1

Cite

Anne Auger, Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 Noisy Testbed. ACM-GECCO Genetic and Evolutionary Computation Conference, Jul 2009, Montreal, Canada. ⟨inria-00430518⟩
122 View
215 Download

Share

Gmail Facebook Twitter LinkedIn More