NON EFFICIENCY AND NON GAUSSIANITY OF A MAXIMUM LIKELIHOOD ESTIMATOR AT HIGH SIGNAL TO NOISE RATIO AND FINITE NUMBER OF SAMPLES

Abstract : In estimation theory, the asymptotic efficiency of the Maximum Likelihood (ML) method for independent identically distributed observations and when the number T of observations tends to infinity is a well known result. In some scenarii, the number of snapshots may be small making this result unapplicable. In the array processing framework, for Gaussian emitted signals, we fill this lack at high Signal to Noise Ratio (SNR). In this situation, we show that the ML estimation is asymptotically (with respect to SNR) non efficient and non Gaussian.
Type de document :
Communication dans un congrès
IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-04, 2004, Montreal, Canada. 2004
Liste complète des métadonnées

Littérature citée [4 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00444829
Contributeur : Alexandre Renaux <>
Soumis le : jeudi 7 janvier 2010 - 12:47:00
Dernière modification le : jeudi 13 septembre 2018 - 15:24:04
Document(s) archivé(s) le : vendredi 18 juin 2010 - 00:31:58

Fichier

RFBL04.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : inria-00444829, version 1

Citation

Alexandre Renaux, Philippe Forster, Eric Boyer, Pascal Larzabal. NON EFFICIENCY AND NON GAUSSIANITY OF A MAXIMUM LIKELIHOOD ESTIMATOR AT HIGH SIGNAL TO NOISE RATIO AND FINITE NUMBER OF SAMPLES. IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-04, 2004, Montreal, Canada. 2004. 〈inria-00444829〉

Partager

Métriques

Consultations de la notice

339

Téléchargements de fichiers

108