Optimal stopping problems for some Markov processes

Abstract : In this paper, we solve explicitly the optimal stopping problem with random discounting and an additive functional as cost of observations for a regular linear diffusion. We also extend the results to the class of one-sided regular Feller processes. This generalizes the result of Beibel and Lerche [Statist. Sinica 7 (1997) 93-108] and [Teor. Veroyatn. Primen. 45 (2000) 657-669] and Irles and Paulsen [Sequential Anal. 23 (2004) 297-316]. Our approach relies on a combination of techniques borrowed from potential theory and stochastic calculus. We illustrate our results by detailing some new examples ranging from linear diffusions to Markov processes of the spectrally negative type.
Type de document :
Article dans une revue
Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2012, 22 (3), pp.1243-1265. <10.1214/11-AAP795>
Liste complète des métadonnées


https://hal.inria.fr/inria-00458901
Contributeur : Etienne Tanré <>
Soumis le : lundi 5 novembre 2012 - 15:16:13
Dernière modification le : mardi 22 septembre 2015 - 01:12:20
Document(s) archivé(s) le : mercredi 6 février 2013 - 03:55:21

Fichiers

aap795.pdf
Accord explicite pour ce dépôt

Identifiants

Collections

Citation

Mamadou Cissé, Pierre Patie, Etienne Tanré. Optimal stopping problems for some Markov processes. Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2012, 22 (3), pp.1243-1265. <10.1214/11-AAP795>. <inria-00458901v4>

Partager

Métriques

Consultations de
la notice

279

Téléchargements du document

287