What can one learn about Self-Organized Criticality from Dynamical Systems theory ?

Abstract : We develop a dynamical system approach for the Zhang's model of Self-Organized Criticality, for which the dynamics can be described either in terms of Iterated Function Systems, or as a piecewise hyperbolic dynamical system of skew-product type. In this setting we describe the SOC attractor, and discuss its fractal structure. We show how the Lyapunov exponents, the Hausdorff dimensions, and the system size are related to the probability distribution of the avalanche size, via the Ledrappier-Young formula.
Liste complète des métadonnées

https://hal.inria.fr/inria-00529554
Contributeur : Bruno Cessac <>
Soumis le : lundi 25 octobre 2010 - 20:31:00
Dernière modification le : vendredi 12 janvier 2018 - 01:55:32

Identifiants

Collections

Citation

Ph. Blanchard, B. Cessac, T. Krueger. What can one learn about Self-Organized Criticality from Dynamical Systems theory ?. Journal of Statistical Physics, Springer Verlag, 2000, 98 (1-2), pp.375-404. 〈10.1023/A:1018639308981〉. 〈inria-00529554〉

Partager

Métriques

Consultations de la notice

52