On the dimension of spline spaces on planar T-meshes

Bernard Mourrain 1
1 GALAAD2 - Géométrie , Algèbre, Algorithmes
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : We analyze the space of bivariate functions that are piecewise polynomial of bi-degree <= (m, m') and of smoothness r along the interior edges of a planar T-mesh. We give new combinatorial lower and upper bounds for the dimension of this space by exploiting homological techniques. We relate this dimension to the weight of the maximal interior segments of the T-mesh, defined for an ordering of these maximal interior segments. We show that the lower and upper bounds coincide, for high enough degrees or for hierarchical T-meshes which are enough regular. We give a rule of subdivision to construct hierarchical T-meshes for which these lower and upper bounds coincide. Finally, we illustrate these results by analyzing spline spaces of small degrees and smoothness.
Type de document :
Article dans une revue
Mathematics of Computation, American Mathematical Society, 2014, 83, pp.847-871
Liste complète des métadonnées

https://hal.inria.fr/inria-00533187
Contributeur : Bernard Mourrain <>
Soumis le : dimanche 13 septembre 2015 - 09:32:33
Dernière modification le : mercredi 4 mai 2016 - 01:06:07
Document(s) archivé(s) le : mardi 29 décembre 2015 - 01:03:08

Fichiers

paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00533187, version 3
  • ARXIV : 1011.1752

Collections

Citation

Bernard Mourrain. On the dimension of spline spaces on planar T-meshes. Mathematics of Computation, American Mathematical Society, 2014, 83, pp.847-871. 〈inria-00533187v3〉

Partager

Métriques

Consultations de la notice

380

Téléchargements de fichiers

61