Genus 2 point counting over prime fields

Pierrick Gaudry 1 Éric Schost 2
1 CARAMEL - Cryptology, Arithmetic: Hardware and Software
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : For counting points of genus 2 curves over a large prime field, the best known approach is essentially an extension of Schoof's genus 1 algorithm. We propose various practical improvements to this method and illustrate them with a large scale computation: we counted hundreds of curves, until one was found that is suitable for cryptographic use, with a state-of-the-art security level of approximately 2^128 and desirable speed properties. This curve and its quadratic twist have a Jacobian group whose order is 16 times a prime.
Type de document :
Article dans une revue
Journal of Symbolic Computation, Elsevier, 2012, 47 (4), pp.368-400. 〈10.1016/j.jsc.2011.09.003〉
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00542650
Contributeur : Pierrick Gaudry <>
Soumis le : vendredi 3 décembre 2010 - 10:21:39
Dernière modification le : jeudi 22 septembre 2016 - 14:31:24
Document(s) archivé(s) le : lundi 5 novembre 2012 - 11:15:57

Fichier

countg2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pierrick Gaudry, Éric Schost. Genus 2 point counting over prime fields. Journal of Symbolic Computation, Elsevier, 2012, 47 (4), pp.368-400. 〈10.1016/j.jsc.2011.09.003〉. 〈inria-00542650〉

Partager

Métriques

Consultations de la notice

407

Téléchargements de fichiers

355