Skip to Main content Skip to Navigation
New interface
Preprints, Working Papers, ...

Generalized covariation for Banach space valued processes, Itô formula and applications

Cristina Di Girolami 1 Francesco Russo 2, 3 
1 Laboratoire Manceau de Mathématiques
LMM - Laboratoire Manceau de Mathématiques
2 MATHRISK - Mathematical Risk handling
Inria Paris-Rocquencourt, UPEM - Université Paris-Est Marne-la-Vallée, ENPC - École des Ponts ParisTech
Abstract : This paper discusses a new notion of quadratic variation and covariation for Banach space valued processes (not necessarily semimartingales) and related Itô formula. If $\X$ and $\Y$ take respectively values in Banach spaces $B_{1}$ and $B_{2}$ and $\chi$ is a suitable subspace of the dual of the projective tensor product of $B_{1}$ and $B_{2}$ (denoted by $(B_{1}\hat{\otimes}_{\pi}B_{2})^{\ast}$), we define the so-called $\chi$-covariation of $\X$ and $\Y$. If $\X=\Y$, the $\chi$-covariation is called $\chi$-quadratic variation. The notion of $\chi$-quadratic variation is a natural generalization of the one introduced by Métivier-Pellaumail and Dinculeanu which is too restrictive for many applications. In particular, if $\chi$ is the whole space $(B_{1}\hat{\otimes}_{\pi}B_{1})^{\ast}$ then the $\chi$-quadratic variation coincides with the quadratic variation of a $B_{1}$-valued semimartingale. We evaluate the $\chi$-covariation of various processes for several examples of $\chi$ with a particular attention to the case $B_{1}=B_{2}=C([-\tau,0])$ for some $\tau>0$ and $\X$ and $\Y$ being \textit{window processes}. If $X$ is a real valued process, we call window process associated with $X$ the $C([-\tau,0])$-valued process $\X:=X(\cdot)$ defined by $X_t(y) = X_{t+y}$, where $y \in [-\tau,0]$. The Itô formula introduced here is an important instrument to establish a representation result of Clark-Ocone type for a class of path dependent random variables of type $h=H(X_{T}(\cdot))$, $H:C([-T,0])\longrightarrow\R$ for not-necessarily semimartingales $X$ with finite quadratic variation. This representation will be linked to a function $u:[0,T]\times C([-T,0])\longrightarrow \mathbb{R}$ solving an infinite dimensional partial differential equation.
Document type :
Preprints, Working Papers, ...
Complete list of metadata
Contributor : Francesco Russo Connect in order to contact the contributor
Submitted on : Wednesday, February 27, 2013 - 2:42:10 PM
Last modification on : Wednesday, May 11, 2022 - 12:06:06 PM
Long-term archiving on: : Tuesday, May 28, 2013 - 6:05:08 AM


Files produced by the author(s)


  • HAL Id : inria-00545660, version 4
  • ARXIV : 1012.2484


Cristina Di Girolami, Francesco Russo. Generalized covariation for Banach space valued processes, Itô formula and applications. 2013. ⟨inria-00545660v4⟩



Record views


Files downloads