Balanced realizations of discrete-time stable all-pass systems and the tangential Schur algorithm

Abstract : In this paper, the connections are investigated between two different approaches towards the parametrization of multivariable stable all-pass systems in discrete-time. The first approach involves the tangential Schur algorithm, which employs linear fractional transformations. It stems from the theory of reproducing kernel Hilbert spaces and enables the direct construction of overlapping local parametrizations using Schur parameters and interpolation points. The second approach proceeds in terms of state-space realizations. In the scalar case, a balanced canonical form exists that can also be parametrized by Schur parameters. This canonical form can be constructed recursively, using unitary matrix operations. Here, this procedure is generalized to the multivariable case by establishing the connections with the first approach. It gives rise to balanced realizations and overlapping canonical forms directly in terms of the parameters used in the tangential Schur algorithm.
Type de document :
Article dans une revue
Linear Algebra and its Applications, Elsevier, 2006, 〈10.1016/j.laa.2006.03.027〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00546784
Contributeur : Martine Olivi <>
Soumis le : mardi 14 décembre 2010 - 17:22:11
Dernière modification le : vendredi 12 janvier 2018 - 11:03:48
Document(s) archivé(s) le : mardi 15 mars 2011 - 04:10:04

Fichiers

HOP2005.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Bernard Hanzon, Martine Olivi, Ralf L.M. Peeters. Balanced realizations of discrete-time stable all-pass systems and the tangential Schur algorithm. Linear Algebra and its Applications, Elsevier, 2006, 〈10.1016/j.laa.2006.03.027〉. 〈inria-00546784〉

Partager

Métriques

Consultations de la notice

292

Téléchargements de fichiers

126