Canonical lossless state-space systems: Staircase forms and the Schur algorithm

Abstract : A new finite atlas of overlapping balanced canonical forms for multivariate discrete-time lossless systems is presented. The canonical forms have the property that the controllability matrix is positive upper triangular up to a suitable permutation of its columns. This is a generalization of a similar balanced canonical form for continuous-time lossless systems. It is shown that this atlas is in fact a finite sub-atlas of the infinite atlas of overlapping balanced canonical forms for lossless systems that is associated with the tangential Schur algorithm; such canonical forms satisfy certain interpolation conditions on a corresponding sequence of lossless transfer matrices. The connection between these balanced canonical forms for lossless systems and the tangential Schur algorithm for lossless systems is a generalization of the same connection in the SISO case that was noted before. The results are directly applicable to obtain a finite sub-atlas of multivariate input-normal canonical forms for stable linear systems of given fixed order, which is minimal in the sense that no chart can be left out of the atlas without losing the property that the atlas covers the manifold.
Type de document :
Article dans une revue
Linear Algebra and its Applications, Elsevier, 2007, 425, pp.404-433. 〈10.1016/j.laa.2006.09.029〉
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00546790
Contributeur : Martine Olivi <>
Soumis le : mercredi 15 décembre 2010 - 11:38:53
Dernière modification le : vendredi 12 janvier 2018 - 11:03:50
Document(s) archivé(s) le : mercredi 16 mars 2011 - 02:39:19

Fichiers

PeetersHanzonOlivi_LAA2007.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Ralf L.M. Peeters, Bernard Hanzon, Martine Olivi. Canonical lossless state-space systems: Staircase forms and the Schur algorithm. Linear Algebra and its Applications, Elsevier, 2007, 425, pp.404-433. 〈10.1016/j.laa.2006.09.029〉. 〈inria-00546790〉

Partager

Métriques

Consultations de la notice

212

Téléchargements de fichiers

142