Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems

Abstract : We propose a general reduced-order filtering strategy adapted to Unscented Kalman Filtering for any choice of sampling points distribution. This provides tractable filtering algorithms which can be used with large-dimensional systems when the uncertainty space is of reduced size, and these algorithms only invoke the original dynamical and observation operators, namely, they do not require tangent operator computations, which of course is of considerable benefit when nonlinear operators are considered. The algorithms are derived in discrete time as in the classical UKF formalism - well-adapted to time discretized dynamical equations - and then extended into consistent continuous-time versions. This reduced-order filtering approach can be used in particular for the estimation of parameters in large dynamical systems arising from the discretization of partial differential equations, when state estimation can be handled by an adequate Luenberger observer inspired from feedback control. In this case, we give an analysis of the joint state-parameter estimation procedure based on linearized error, and we illustrate the effectiveness of the approach using a test problem inspired from cardiac biomechanics.
Type de document :
Article dans une revue
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2011, 17 (2), pp.380-405. 〈10.1051/cocv/2010006〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00550104
Contributeur : Dominique Chapelle <>
Soumis le : jeudi 30 décembre 2010 - 10:03:00
Dernière modification le : mercredi 14 décembre 2016 - 01:06:42
Document(s) archivé(s) le : jeudi 31 mars 2011 - 02:38:35

Fichier

PM-DC-10.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Collections

Citation

Philippe Moireau, Dominique Chapelle. Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2011, 17 (2), pp.380-405. 〈10.1051/cocv/2010006〉. 〈inria-00550104〉

Partager

Métriques

Consultations de la notice

582

Téléchargements de fichiers

736