Bringing Introspection into BlobSeer: Towards a Self-Adaptive Distributed Data Management System

Abstract : Introspection is the prerequisite of an autonomic behavior, the first step towards a performance improvement and a resource-usage optimization for large-scale distributed systems. In Grid environments, the task of observing the application behavior is assigned to monitoring systems. However, most of them are designed to provide general resource information and do not consider specific information for higher-level services. More precisely, in the context of data-intensive applications, a specific introspection layer is required to collect data about the usage of storage resources, about data access patterns, etc. This paper discusses the requirements for an introspection layer in a data-management system for large-scale distributed infrastructures. We focus on the case of BlobSeer, a large-scale distributed system for storing massive data. The paper explains why and how to enhance BlobSeer with introspective capabilities and proposes a three-layered architecture relying on the MonALISA monitoring framework. We illustrate the autonomic behavior of BlobSeer with a self-configuration component aiming to provide storage elasticity by dynamically scaling the number of data providers. Then we propose a preliminary approach for enabling self-protection for the BlobSeer system, through a malicious clients detection component. The introspective architecture has been evaluated on the Grid'5000 testbed, with experiments that prove the feasibility of generating relevant information related to the state and the behavior of the system.
Type de document :
Article dans une revue
International Journal of Applied Mathematics & Computer Science, University of Zielona Góra Press, Poland, 2011, 21 (2), pp.229-242. 〈http://versita.metapress.com/content/3381m823521133q7/fulltext.pdf〉. 〈10.2478/v10006-011-0017-y〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00555610
Contributeur : Alexandra Carpen-Amarie <>
Soumis le : vendredi 14 janvier 2011 - 01:41:06
Dernière modification le : mardi 16 janvier 2018 - 15:54:17
Document(s) archivé(s) le : vendredi 15 avril 2011 - 02:32:28

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Alexandra Carpen-Amarie, Alexandru Costan, Jing Cai, Gabriel Antoniu, Luc Bougé. Bringing Introspection into BlobSeer: Towards a Self-Adaptive Distributed Data Management System. International Journal of Applied Mathematics & Computer Science, University of Zielona Góra Press, Poland, 2011, 21 (2), pp.229-242. 〈http://versita.metapress.com/content/3381m823521133q7/fulltext.pdf〉. 〈10.2478/v10006-011-0017-y〉. 〈inria-00555610〉

Partager

Métriques

Consultations de la notice

672

Téléchargements de fichiers

165