Clustering functional data using wavelets

Anestis Antoniadis 1 Xavier Brossat 2 Jairo Cugliari 2, 3, 4, * Jean-Michel Poggi 4, 3
* Auteur correspondant
1 MOISE - Modelling, Observations, Identification for Environmental Sciences
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
4 SELECT - Model selection in statistical learning
Inria Saclay - Ile de France, LMO - Laboratoire de Mathématiques d'Orsay, CNRS - Centre National de la Recherche Scientifique : UMR
Abstract : We present two methods for detecting patterns and clusters in high dimensional time-dependent functional data. Our methods are based on wavelet-based similarity measures, since wavelets are well suited for identifying highly discriminant local time and scale features. The multiresolution aspect of the wavelet transform provides a time-scale decomposition of the signals allowing to visualize and to cluster the functional data into homogeneous groups. For each input function, through its empirical orthogonal wavelet transform the first method uses the distribution of energy across scales generate a handy number of features that can be sufficient to still make the signals well distinguishable. Our new similarity measure combined with an efficient feature selection technique in the wavelet domain is then used within more or less classical clustering algorithms to effectively differentiate among high dimensional populations. The second method uses dissimilarity measures between the whole time-scale representations and are based on wavelet-coherence tools. The clustering is then performed using a k-centroid algorithm starting from these dissimilarities. Practical performance of these methods that jointly designs both the feature selection in the wavelet domain and the classification distance is demonstrated through simulations as well as daily profiles of the French electricity power demand.
Type de document :
[Research Report] RR-7515, INRIA Grenoble - Rhone-Alpes. 2011, pp.30
Liste complète des métadonnées
Contributeur : Jairo Cugliari <>
Soumis le : mercredi 18 mai 2011 - 12:50:45
Dernière modification le : jeudi 7 février 2019 - 16:16:03
Document(s) archivé(s) le : vendredi 19 août 2011 - 02:20:15


Fichiers produits par l'(les) auteur(s)


  • HAL Id : inria-00559115, version 2


Anestis Antoniadis, Xavier Brossat, Jairo Cugliari, Jean-Michel Poggi. Clustering functional data using wavelets. [Research Report] RR-7515, INRIA Grenoble - Rhone-Alpes. 2011, pp.30. 〈inria-00559115v2〉



Consultations de la notice


Téléchargements de fichiers