Uncertainties assessment in global sensitivity indices estimation from metamodels - Archive ouverte HAL Access content directly
Journal Articles International Journal for Uncertainty Quantification Year : 2014

Uncertainties assessment in global sensitivity indices estimation from metamodels

(1, 2) , (1) , (1, 2)
1
2

Abstract

Global sensitivity analysis is often impracticable for complex and resource intensive numerical models, as it requires a large number of runs. The metamodel approach replaces the original model by an approximated code that is much faster to run. This paper deals with the information loss in the estimation of sensitivity indices due to the metamodel approximation. A method for providing a robust error assessment is presented, hence enabling significant time savings without sacrificing on precision and rigor. The methodology is illustrated on two different types of metamodels: one based on reduced basis, the other one on RKHS interpolation.
Fichier principal
Vignette du fichier
BoundSA3.pdf (267.04 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00567977 , version 1 (22-02-2011)
inria-00567977 , version 2 (15-11-2011)
inria-00567977 , version 3 (15-06-2012)

Identifiers

Cite

Alexandre Janon, Maëlle Nodet, Clémentine Prieur. Uncertainties assessment in global sensitivity indices estimation from metamodels. International Journal for Uncertainty Quantification, 2014, 4 (1), pp.21-36. ⟨10.1615/Int.J.UncertaintyQuantification.2012004291⟩. ⟨inria-00567977v3⟩
776 View
1454 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More