Multi-scale Mining of fMRI data with Hierarchical Structured Sparsity

Rodolphe Jenatton 1, 2 Alexandre Gramfort 3, 4 Vincent Michel 3, 4 Guillaume Obozinski 1, 2 Evelyn Eger 5 Francis Bach 1, 2 Bertrand Thirion 3, 4
2 SIERRA - Statistical Machine Learning and Parsimony
DI-ENS - Département d'informatique de l'École normale supérieure, ENS Paris - École normale supérieure - Paris, Inria Paris-Rocquencourt, CNRS - Centre National de la Recherche Scientifique : UMR8548
4 PARIETAL - Modelling brain structure, function and variability based on high-field MRI data
Inria Saclay - Ile de France, NEUROSPIN - Service NEUROSPIN
Abstract : Inverse inference, or "brain reading", is a recent paradigm for analyzing functional magnetic resonance imaging (fMRI) data, based on pattern recognition and statistical learning. By predicting some cognitive variables related to brain activation maps, this approach aims at decoding brain activity. Inverse inference takes into account the multivariate information between voxels and is currently the only way to assess how precisely some cognitive information is encoded by the activity of neural populations within the whole brain. However, it relies on a prediction function that is plagued by the curse of dimensionality, since there are far more features than samples, i.e., more voxels than fMRI volumes. To address this problem, different methods have been proposed, such as, among others, univariate feature selection, feature agglomeration and regularization techniques. In this paper, we consider a sparse hierarchical structured regularization. Specifically, the penalization we use is constructed from a tree that is obtained by spatially-constrained agglomerative clustering. This approach encodes the spatial structure of the data at different scales into the regularization, which makes the overall prediction procedure more robust to inter-subject variability. The regularization used induces the selection of spatially coherent predictive brain regions simultaneously at different scales. We test our algorithm on real data acquired to study the mental representation of objects, and we show that the proposed algorithm not only delineates meaningful brain regions but yields as well better prediction accuracy than reference methods.
Type de document :
Article dans une revue
SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2012, 5 (3), pp.835-856. 〈10.1137/110832380〉
Liste complète des métadonnées

Littérature citée [65 références]  Voir  Masquer  Télécharger
Contributeur : Rodolphe Jenatton <>
Soumis le : mercredi 7 décembre 2011 - 19:08:29
Dernière modification le : jeudi 7 mars 2019 - 15:34:14
Document(s) archivé(s) le : vendredi 16 novembre 2012 - 14:46:05


Fichiers produits par l'(les) auteur(s)




Rodolphe Jenatton, Alexandre Gramfort, Vincent Michel, Guillaume Obozinski, Evelyn Eger, et al.. Multi-scale Mining of fMRI data with Hierarchical Structured Sparsity. SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2012, 5 (3), pp.835-856. 〈10.1137/110832380〉. 〈inria-00589785v2〉



Consultations de la notice


Téléchargements de fichiers