Skip to Main content Skip to Navigation
New interface
Conference papers

Metapopulation SIS epidemic model

Abderrahman Iggidr 1, * Gauthier Sallet 1 Berge Tsanou 1 
* Corresponding author
1 MASAIE - Tools and models of nonlinear control theory for epidemiology and immunology
LMAM - Laboratoire de Mathématiques et Applications de Metz, Inria Nancy - Grand Est, IECL - Institut Élie Cartan de Lorraine
Abstract : We consider a metapopulation model with $n$ patches. The migration model is with residents and travelers. The epidemic model is of SIS type. We confirm the conjecture of Arino and van den Driessche. We prove that if $\mathcal R_0 \leq 1$ then the disease free equilibrium is globally asymptotically stable. If $\mathcal R_0 >1$ we prove that there exists a unique endemic equilibrium which is globally asymptotically stable on the nonnegative orthant except the disease free equilibrium.
Complete list of metadata
Contributor : Abderrahman Iggidr Connect in order to contact the contributor
Submitted on : Tuesday, May 24, 2011 - 4:40:16 PM
Last modification on : Saturday, June 25, 2022 - 7:41:41 PM
Long-term archiving on: : Thursday, August 25, 2011 - 2:26:36 AM


Publisher files allowed on an open archive


  • HAL Id : inria-00595397, version 1



Abderrahman Iggidr, Gauthier Sallet, Berge Tsanou. Metapopulation SIS epidemic model. 9th African Conference on Research in Computer Science - CARI'2008, CARI, Oct 2008, Rabat, Morocco. pp.51-59. ⟨inria-00595397⟩



Record views


Files downloads