Construction of New Completely Regular Z2Z4-linear Codes from Old

Abstract : A code C is said to be Z2Z4-additive if its coordinates can be partitioned into two subsets X and Y , in such a way that the punctured code of C obtained by removing the coordinates outside X (or, respec- tively, Y ) is a binary linear code (respectively, a quaternary linear code). The binary image of a Z2Z4-additive code, through the Gray map, is a Z2Z4-linear code, which is not always linear. Given a perfect Z2Z4-linear code, which is known to be completely regular, some constructions yield- ing new Z2Z4-linear codes are computed, and the completely regularity of the obtained codes is studied.
Type de document :
Communication dans un congrès
WCC 2011 - Workshop on coding and cryptography, Apr 2011, Paris, France. pp.71-80, 2011
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00607336
Contributeur : Assia Saadi <>
Soumis le : vendredi 8 juillet 2011 - 15:37:45
Dernière modification le : mercredi 29 novembre 2017 - 10:27:34
Document(s) archivé(s) le : lundi 12 novembre 2012 - 10:36:30

Fichier

77.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00607336, version 1

Collections

Citation

Josep Rifa, Lorena Ronquillo. Construction of New Completely Regular Z2Z4-linear Codes from Old. WCC 2011 - Workshop on coding and cryptography, Apr 2011, Paris, France. pp.71-80, 2011. 〈inria-00607336〉

Partager

Métriques

Consultations de la notice

277

Téléchargements de fichiers

137