Recovering missing data on satellite images

Abstract : Data Assimilation is commonly used in environmental sciences to improve forecasts, obtained by meteorological, oceanographic or air quality simulation models, with observation data. It aims to solve an evolution equation, describing the dynamics, and an observation equation, measuring the misfit between the state vector and the observations, to get a better knowledge of the actual system's state, named the reference. In this article, we describe how to use this technique to recover missing data and reduce noise on satellite images. The recovering process is based on assumptions on the underlying dynamics displayed by the sequence of images. This is a promising alternative to methods such as space-time interpolation. In order to better evaluate our approach, results are first quantified for an artificial noise applied on the acquisitions and then displayed for real data.
Type de document :
Communication dans un congrès
Heyden, A. and Kahl, F. SCIA 2011 - Scandinavian Conference on Image Analysis, May 2011, Ystad Saltsjöbad, Sweden. Springer Verlag, 6688, pp.697-707, 2011, Lecture Notes in Computer Science. 〈10.1007/978-3-642-21227-7_65〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00612328
Contributeur : Nathalie Gaudechoux <>
Soumis le : vendredi 14 octobre 2011 - 12:31:40
Dernière modification le : vendredi 31 août 2018 - 09:25:55
Document(s) archivé(s) le : mardi 13 novembre 2012 - 16:41:46

Fichier

scia_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Isabelle Herlin, Dominique Béréziat, Nicolas Mercier. Recovering missing data on satellite images. Heyden, A. and Kahl, F. SCIA 2011 - Scandinavian Conference on Image Analysis, May 2011, Ystad Saltsjöbad, Sweden. Springer Verlag, 6688, pp.697-707, 2011, Lecture Notes in Computer Science. 〈10.1007/978-3-642-21227-7_65〉. 〈inria-00612328〉

Partager

Métriques

Consultations de la notice

365

Téléchargements de fichiers

138