A Riemannian Framework for Tensor Computing

Abstract : Tensors are nowadays a common source of geometric information. In this paper, we propose to endow the tensor space with an affine-invariant Riemannian metric. We demonstrate that it leads to strong theoretical properties: the cone of positive definite symmetric matrices is replaced by a regular and complete manifold without boundaries (null eigenvalues are at the infinity), the geodesic between two tensors and the mean of a set of tensors are uniquely defined, etc. We have previously shown that the Riemannian metric provides a powerful framework for generalizing statistics to manifolds. In this paper, we show that it is also possible to generalize to tensor fields many important geometric data processing algorithms such as interpolation, filtering, diffusion and restoration of missing data. For instance, most interpolation and Gaussian filtering schemes can be tackled efficiently through a weighted mean computation. Linear and anisotropic diffusion schemes can be adapted to our Riemannian framework, through partial differential evolution equations, provided that the metric of the tensor space is taken into account. For that purpose, we provide intrinsic numerical schemes to compute the gradient and Laplace-Beltrami operators. Finally, to enforce the fidelity to the data (either sparsely distributed tensors or complete tensors fields) we propose least-squares criteria based on our invariant Riemannian distance which are particularly simple and efficient to solve.
Liste complète des métadonnées

Littérature citée [36 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/inria-00614990
Contributeur : Project-Team Asclepios <>
Soumis le : mercredi 17 août 2011 - 21:11:39
Dernière modification le : jeudi 11 janvier 2018 - 16:17:44
Document(s) archivé(s) le : vendredi 25 novembre 2011 - 11:25:07

Fichier

Pennec.IJCV05.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Xavier Pennec, Pierre Fillard, Nicholas Ayache. A Riemannian Framework for Tensor Computing. International Journal of Computer Vision, Springer Verlag, 2006, 66 (1), pp.41--66. 〈10.1007/s11263-005-3222-z〉. 〈inria-00614990〉

Partager

Métriques

Consultations de la notice

363

Téléchargements de fichiers

169