Personalization of Reaction-Diffusion Tumor Growth Models in MR Images: Application to Brain Gliomas Characterization and Radiotherapy Planning

Ender Konukoglu 1, 2 Olivier Clatz 2, * Hervé Delingette 2, * Nicholas Ayache 2, *
* Auteur correspondant
2 ASCLEPIOS - Analysis and Simulation of Biomedical Images
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Reaction-diffusion based tumor growth models have been widely used in the literature for modeling the growth of brain gliomas. Lately, recent models have started integrating medical images, specifically anatomical and diffusion images, in their formulation. On the other hand, the adaptation of the general model to the specific patient cases has not been studied thoroughly yet. In this chapter we address this adaptation. This chapter is a short summary of the articles (Konukoglu 2009a), (Konukoglu 2009b) and the thesis (Konukoglu 2009c) that we have submitted recently. In the first part, we describe a parameter estimation method for reaction-diffusion tumor growth models using time series of medical (Magnetic Resonance) images. This method estimates the patient specific parameters of the model using the images of the patient taken at different successive time instances. In the second part of the chapter we focus on an application of the personalized models aimed to improve the tumor targeting in radiation therapy. Specifically we address the problem of limited visualization of medical images. We describe a method for extrapolating the invisible infiltration margins of gliomas in the MR images and the usage of these margins in constructing irradiation margins taking into account the growth dynamics of the tumor. Finally for both parts we show preliminary results demonstrating the power and the potential benefits of the personalization
Type de document :
Chapitre d'ouvrage
Deisboeck, Thomas S. and Stamatakos, Georgios. Multiscale Cancer Modeling, CRC Press, 2010, Chapman & Hall/CRC Mathematical & Computational Biology
Liste complète des métadonnées

https://hal.inria.fr/inria-00616111
Contributeur : Project-Team Asclepios <>
Soumis le : lundi 8 juillet 2013 - 16:52:51
Dernière modification le : jeudi 11 janvier 2018 - 16:41:45
Document(s) archivé(s) le : mercredi 9 octobre 2013 - 02:35:10

Fichier

nih-cvit-chapter.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : inria-00616111, version 1

Collections

Citation

Ender Konukoglu, Olivier Clatz, Hervé Delingette, Nicholas Ayache. Personalization of Reaction-Diffusion Tumor Growth Models in MR Images: Application to Brain Gliomas Characterization and Radiotherapy Planning. Deisboeck, Thomas S. and Stamatakos, Georgios. Multiscale Cancer Modeling, CRC Press, 2010, Chapman & Hall/CRC Mathematical & Computational Biology. 〈inria-00616111〉

Partager

Métriques

Consultations de la notice

322

Téléchargements de fichiers

302