Synthetic Echocardiographic Image Sequences for Cardiac Inverse Electro-Kinematic Learning

Abstract : In this paper, we propose to create a rich database of syn- thetic time series of 3D echocardiography (US) images using simulations of a cardiac electromechanical model, in order to study the relationship between electrical disorders and kinematic patterns visible in medical images. From a real 4D sequence, a software pipeline is applied to create several synthetic sequences by combining various steps including motion tracking and segmentation. We use here this synthetic database to train a machine learning algorithm which estimates the depolarization times of each cardiac segment from invariant kinematic descriptors such as local displacements or strains. First experiments on the inverse electro- kinematic learning are demonstrated on the synthetic 3D US database and are evaluated on clinical 3D US sequences from two patients with Left Bundle Branch Block.
Type de document :
Communication dans un congrès
Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI), 2011, Toronto, Canada, Canada. Springer, Heidelberg, 6891, pp.500-507, 2011, LNCS. 〈10.1007/978-3-642-23623-5_63〉
Liste complète des métadonnées

https://hal.inria.fr/inria-00616214
Contributeur : Project-Team Asclepios <>
Soumis le : vendredi 19 août 2011 - 19:57:18
Dernière modification le : mardi 5 juin 2018 - 10:14:34

Lien texte intégral

Identifiants

Citation

Adityo Prakosa, Maxime Sermesant, Hervé Delingette, Eric Saloux, Pascal Allain, et al.. Synthetic Echocardiographic Image Sequences for Cardiac Inverse Electro-Kinematic Learning. Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI), 2011, Toronto, Canada, Canada. Springer, Heidelberg, 6891, pp.500-507, 2011, LNCS. 〈10.1007/978-3-642-23623-5_63〉. 〈inria-00616214〉

Partager

Métriques

Consultations de la notice

550