Chargement de la vidéo...

Licence


Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Share

Link
Intégrer la vidéo

Metrics

Record views

948

Files downloads

79

Simulation of the growth-fragmentation equation in a periodic case - Non-dissipative numerical scheme

2016-12-01

Marie Doumic 1
1 MAMBA - Modelling and Analysis for Medical and Biological Applications
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt
Description : This video illustrates the study by E. Bernard, M. Doumic and P. Gabriel https://hal.archives-ouvertes.fr/hal-01363549/document by showing the time behaviour of the solution to the following growth-fragmentation equation: $$\frac{\partial}{\partial t} u(t,x) + \frac{\partial}{\partial t} (x u(t,x)) + B(x)u(t,x)=4B(2x)u(t,2x),\qquad u(0,x)=u^{in}(x).$$ The numerical scheme is explicit, and uses a splitting between the transport operator and the fragmentation operator, on a geometric grid. This allows to capture the asymptotic periodic behaviour (due to a lack of dissipativity in the equation).


https://hal.inria.fr/medihal-01407826
Contributor : Marie Doumic <>
Submitted on : Friday, December 2, 2016 - 3:36:13 PM
Last modification on : Sunday, March 31, 2019 - 1:24:43 AM