Skip to Main content Skip to Navigation
Conference papers

Tourist Attraction Recommendation Based on Knowledge Graph

Abstract : This paper focuses on building recommendation model based on knowledge graph in the tourism field. A knowledge graph for tourist attractions in the Bangkok city is constructed, and a tourist attraction recommendation model based on the knowledge graph is presented. Firstly, we collect tourism data in Bangkok and generate a tourist attraction knowledge graph by using the Neo4j tool. Then, by applying the network representation learning method Node2Vec, we generate the feature vectors of both attractions and tourists, and calculate the correlation scores between tourists and attractions according to the cosine similarity. Finally, we normalize the correlation scores to generate the recommended list. This model presented in the paper can overcome the sparsity problem of tourist knowledge graphs and can be used in large scale knowledge graph.
Document type :
Conference papers
Complete list of metadatas

Cited literature [9 references]  Display  Hide  Download

https://hal.inria.fr/hal-02197799
Contributor : Hal Ifip <>
Submitted on : Tuesday, July 30, 2019 - 5:02:12 PM
Last modification on : Tuesday, July 30, 2019 - 5:12:17 PM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2021-01-01

Please log in to resquest access to the document

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Phatpicha Yochum, Liang Chang, Tianlong Gu, Manli Zhu, Weitao Zhang. Tourist Attraction Recommendation Based on Knowledge Graph. 10th International Conference on Intelligent Information Processing (IIP), Oct 2018, Nanning, China. pp.80-85, ⟨10.1007/978-3-030-00828-4_9⟩. ⟨hal-02197799⟩

Share

Metrics

Record views

133