Bindweeds or random walks in random environments on multiplexed trees and their asympotics

Abstract : We report on the asymptotic behaviour of a new model of random walk, we term the bindweed model, evolving in a random environment on an infinite multiplexed tree.The term multiplexed means that the model can be viewed as a nearest neighbours random walk on a tree whose vertices carry an internal degree of freedom from the finite set $\{1,...,d\}$, for some integer $d$. The consequence of the internal degree of freedom is an enhancement of the tree graph structure induced by the replacement of ordinary edges by multi-edges, indexed by the set $\{1,...,d\} × \{1,...,d\}.$ This indexing conveys the information on the internal degree of freedom of the vertices contiguous to each edge. The term random environment means that the jumping rates for the random walk are a family of edge-indexed random variables, independent of the natural filtration generated by the random variables entering in the definition of the random walk; their joint distribution depends on the index of each component of the multi-edges. We study the large time asymptotic behaviour of this random walk and classify it with respect to positive recurrence or transience in terms of a specific parameter of the probability distribution of the jump rates.This classifying parameter is shown to coincide with the critical value of a matrix-valued multiplicative cascade on the ordinary tree (i.e.the one without internal degrees of freedom attached to the vertices) having the same vertex set as the state space of the random walk. Only results are presented here since the detailed proofs will appear elsewhere.
Type de document :
Communication dans un congrès
Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.205-216, 2003, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00000952
Contributeur : Coordination Episciences Iam <>
Soumis le : mercredi 12 août 2015 - 09:06:20
Dernière modification le : mardi 24 avril 2018 - 13:55:36
Document(s) archivé(s) le : vendredi 13 novembre 2015 - 11:36:56

Fichier

dmAC0120.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00000952, version 2

Citation

Mikhail Menshikov, Dimitri Petritis, Serguei Popov. Bindweeds or random walks in random environments on multiplexed trees and their asympotics. Cyril Banderier and Christian Krattenthaler. Discrete Random Walks, DRW'03, 2003, Paris, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AC, Discrete Random Walks (DRW'03), pp.205-216, 2003, DMTCS Proceedings. 〈hal-00000952v2〉

Partager

Métriques

Consultations de la notice

282

Téléchargements de fichiers

86