The averaged control system of fast oscillating control systems

Abstract : For control systems that either have a fast explicit periodic dependence on time and bounded controls or have periodic solutions and small controls, we define an average control system that takes into account all possible variations of the control, and prove that its solutions approximate all solutions of the oscillating system as oscillations go faster. The dimension of its velocity set is characterized geometrically. When it is maximum the average system defines a Finsler metric, not twice differentiable in general. For minimum time control, this average system allows one to give a rigorous proof that averaging the Hamiltonian given by the maximum principle is a valid approximation.
Type de document :
Article dans une revue
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2013, 51 (3), pp.2280-2305. 〈10.1137/11085791X〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00648330
Contributeur : Jean-Baptiste Pomet <>
Soumis le : vendredi 7 décembre 2012 - 15:53:01
Dernière modification le : jeudi 11 janvier 2018 - 17:05:47
Document(s) archivé(s) le : samedi 17 décembre 2016 - 22:55:05

Fichiers

AverageControlSystemV20.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Alex Bombrun, Jean-Baptiste Pomet. The averaged control system of fast oscillating control systems. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2013, 51 (3), pp.2280-2305. 〈10.1137/11085791X〉. 〈hal-00648330v4〉

Partager

Métriques

Consultations de la notice

453

Téléchargements de fichiers

243