Skip to Main content Skip to Navigation
Conference papers

Finding ECM-friendly curves through a study of Galois properties

Abstract : In this paper we prove some divisibility properties of the cardinality of elliptic curves modulo primes. These proofs explain the good behavior of certain parameters when using Montgomery or Edwards curves in the setting of the elliptic curve method (ECM) for integer factorization. The ideas of the proofs help us to find new families of elliptic curves with good division properties which increase the success probability of ECM.
Complete list of metadata

https://hal.inria.fr/hal-00671948
Contributor : Razvan Barbulescu Connect in order to contact the contributor
Submitted on : Monday, September 3, 2012 - 10:58:27 AM
Last modification on : Saturday, October 16, 2021 - 11:26:06 AM
Long-term archiving on: : Friday, December 16, 2016 - 6:56:23 AM

Files

article.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00671948, version 2
  • ARXIV : 1202.4285

Collections

Citation

Razvan Barbulescu, Joppe Bos, Cyril Bouvier, Thorsten Kleinjung, Peter Montgomery. Finding ECM-friendly curves through a study of Galois properties. ANTS-X 10th Algorithmic Number Theory Symposium - 2012, University of California, Jul 2012, San Diego, United States. ⟨hal-00671948v2⟩

Share

Metrics

Record views

658

Files downloads

498