Exterior sphere condition and time optimal control for differential inclusions

Abstract : The minimum time function $T(\cdot)$ of smooth control systems is known to be locally semiconcave provided Petrov's controllability condition is satisfied. Moreover, such a regularity holds up to the boundary of the target under an inner ball assumption. We generalize this analysis to differential inclusions, replacing the above hypotheses with the continuity of $T(\cdot)$ near the target, and an inner ball property for the multifunction associated with the dynamics. In such a weakened set-up, we prove that the hypograph of $T(\cdot)$ satisfies, locally, an exterior sphere condition. As is well-known, this geometric property ensures most of the regularity results that hold for semiconcave functions, without assuming $T(\cdot)$ to be Lipschitz.
Type de document :
Article dans une revue
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2011, 49 (6), pp.2558-2576. 〈10.1137/110825078〉
Liste complète des métadonnées

https://hal.inria.fr/hal-00710651
Contributeur : Estelle Bouzat <>
Soumis le : jeudi 21 juin 2012 - 13:50:11
Dernière modification le : mercredi 27 juillet 2016 - 14:48:48

Lien texte intégral

Identifiants

Collections

Citation

Piermarco Cannarsa, Khai T. Nguyen. Exterior sphere condition and time optimal control for differential inclusions. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2011, 49 (6), pp.2558-2576. 〈10.1137/110825078〉. 〈hal-00710651〉

Partager

Métriques

Consultations de la notice

110