Computational results of a semidefinite branch-and-bound algorithm for k-cluster

Nathan Krislock 1, * Jérôme Malick 2 Frédéric Roupin 3
* Corresponding author
2 BIPOP - Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : This computational paper presents a method to solve k-cluster problems exactly by intersecting semidefinite and polyhedral relaxations. Our algorithm uses a generic branch-and-bound method featuring an improved semidefinite bounding procedure. Extensive numerical experiments show that this algorithm outperforms the best known methods both in time and ability to solve large instances. For the first time, numerical results are reported for k-cluster problems on unstructured graphs with 160 vertices.
Document type :
Journal articles
Computers and Operations Research, Elsevier, 2016, 66, pp.153-159. 〈10.1016/j.cor.2015.07.008〉
Liste complète des métadonnées

Cited literature [20 references]  Display  Hide  Download

https://hal.inria.fr/hal-00717212
Contributor : Nathan Krislock <>
Submitted on : Friday, February 6, 2015 - 7:20:54 PM
Last modification on : Wednesday, April 11, 2018 - 1:59:25 AM
Document(s) archivé(s) le : Sunday, April 16, 2017 - 4:18:26 AM

File

manuscript_COR3.pdf
Files produced by the author(s)

Identifiers

Citation

Nathan Krislock, Jérôme Malick, Frédéric Roupin. Computational results of a semidefinite branch-and-bound algorithm for k-cluster. Computers and Operations Research, Elsevier, 2016, 66, pp.153-159. 〈10.1016/j.cor.2015.07.008〉. 〈hal-00717212v6〉

Share

Metrics

Record views

633

Files downloads

221