Enumerating the edge-colourings and total colourings of a regular graph

Stéphane Bessy 1 Frédéric Havet 2
1 ALGCO - Algorithmes, Graphes et Combinatoire
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
2 COATI - Combinatorics, Optimization and Algorithms for Telecommunications
CRISAM - Inria Sophia Antipolis - Méditerranée , Laboratoire I3S - COMRED - COMmunications, Réseaux, systèmes Embarqués et Distribués
Abstract : In this paper, we are interested in computing the number of edge colourings and total colourings of a connected graph. We prove that the maximum number of $k$-edge-colourings of a connected $k$-regular graph on $n$ vertices is $k\cdot((k-1)!)^{n/2}$. Our proof is constructive and leads to a branching algorithm enumerating all the $k$-edge-colourings of a connected $k$-regular graph in time $O^*(((k-1)!)^{n/2})$ and polynomial space. In particular, we obtain a algorithm to enumerate all the $3$-edge-colourings of a connected cubic graph in time $O^*(2^{n/2})=O^*(1.4143^n)$ and polynomial space. This improves the running time of $O^*(1.5423^n)$ of the algorithm due to Golovach et al.~\cite{GKC10}. We also show that the number of $4$-total-colourings of a connected cubic graph is at most $3\cdot 2^{3n/2}$. Again, our proof yields a branching algorithm to enumerate all the $4$-total-colourings of a connected cubic graph.
Document type :
Journal articles
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal.inria.fr/hal-00821598
Contributor : Frederic Havet <>
Submitted on : Sunday, October 23, 2016 - 4:00:10 PM
Last modification on : Monday, November 5, 2018 - 3:36:03 PM

File

3aretecol.pdf
Files produced by the author(s)

Identifiers

Citation

Stéphane Bessy, Frédéric Havet. Enumerating the edge-colourings and total colourings of a regular graph. Journal of Combinatorial Optimization, Springer Verlag, 2013, 25 (4), pp.523-535. ⟨10.1007/s10878-011-9448-5⟩. ⟨hal-00821598⟩

Share

Metrics

Record views

427

Files downloads

150