Explicit construction of chaotic attractors in Glass networks

Roderick Edwards 1 Etienne Farcot 2, 3 Eric Foxall 1
2 VIRTUAL PLANTS - Modeling plant morphogenesis at different scales, from genes to phenotype
CRISAM - Inria Sophia Antipolis - Méditerranée , INRA - Institut National de la Recherche Agronomique, Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] : UMR51
Abstract : Chaotic dynamics have been observed in example piecewise-affine models of gene regulatory networks. Here we show how the underlying Poincaré maps can be explicitly constructed. To do this, we proceed in two steps. First, we consider a limit case, where some parameters tend to ∞, and then consider the case with finite parameters as a perturbation of the previous one. We provide a detailed example of this construction, in 3-d, with several thresholds per variable. This construction is essentially a topological horseshoe map. We show that the limit situation is conjugate to the golden mean shift, and is thus chaotic. Then, we show that chaos is preserved for large parameters, relying on the structural stability of the return map in the limit case. We also describe a method to embed systems with several thresholds into binary systems, of higher dimensions. This shows that all results found for systems having several thresholds remain valid in the binary case.
Type de document :
Article dans une revue
Chaos, Solitons and Fractals, Elsevier, 2012, 45 (5), pp.666-680. 〈10.1016/j.chaos.2012.02.018〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-00828842
Contributeur : Christophe Godin <>
Soumis le : mercredi 7 janvier 2015 - 11:11:12
Dernière modification le : vendredi 19 octobre 2018 - 15:22:02
Document(s) archivé(s) le : mercredi 8 avril 2015 - 11:40:59

Fichiers

Horseshoe_final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Roderick Edwards, Etienne Farcot, Eric Foxall. Explicit construction of chaotic attractors in Glass networks. Chaos, Solitons and Fractals, Elsevier, 2012, 45 (5), pp.666-680. 〈10.1016/j.chaos.2012.02.018〉. 〈hal-00828842〉

Partager

Métriques

Consultations de la notice

237

Téléchargements de fichiers

276