Hidden hybrid Markov/semi-Markov chains.

Yann Guédon 1, 2
2 VIRTUAL PLANTS - Modeling plant morphogenesis at different scales, from genes to phenotype
CRISAM - Inria Sophia Antipolis - Méditerranée , INRA - Institut National de la Recherche Agronomique, Centre de coopération internationale en recherche agronomique pour le développement [CIRAD] : UMR51
Abstract : Models that combine Markovian states with implicit geometric state occupancy distributions and semi-Markovian states with explicit state occupancy distributions, are investigated. This type of model retains the flexibility of hidden semi-Markov chains for the modeling of short or medium size homogeneous zones along sequences but also enables the modeling of long zones with Markovian states. The forward-backward algorithm, which in particular enables to implement efficiently the E-step of the EM algorithm, and the Viterbi algorithm for the restoration of the most likely state sequence are derived. It is also shown that macro-states, i.e. series-parallel networks of states with common observation distribution, are not a valid alternative to semi-Markovian states but may be useful at a more macroscopic level to combine Markovian states with semi-Markovian states. This statistical modeling approach is illustrated by the analysis of branching and flowering patterns in plants.
Type de document :
Article dans une revue
Computational Statistics and Data Analysis, Elsevier, 2005, 49 (3), pp.663-688. 〈10.1016/j.csda.2004.05.033〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00830074
Contributeur : Christophe Godin <>
Soumis le : mardi 4 juin 2013 - 13:48:15
Dernière modification le : samedi 27 janvier 2018 - 01:30:42
Document(s) archivé(s) le : jeudi 5 septembre 2013 - 04:21:58

Fichier

CSDAguedon2005.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Yann Guédon. Hidden hybrid Markov/semi-Markov chains.. Computational Statistics and Data Analysis, Elsevier, 2005, 49 (3), pp.663-688. 〈10.1016/j.csda.2004.05.033〉. 〈hal-00830074〉

Partager

Métriques

Consultations de la notice

451

Téléchargements de fichiers

227