Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations

Philippe Chartier 1, 2 Nicolas Crouseilles 1, 2 Mohammed Lemou 1, 2 Florian Méhats 1, 2
1 IPSO - Invariant Preserving SOlvers
IRMAR - Institut de Recherche Mathématique de Rennes, Inria Rennes – Bretagne Atlantique
Abstract : This work is devoted to the numerical simulation of nonlinear Schrödinger and Klein-Gordon equations. We present a general strategy to construct numerical schemes which are uniformly accurate with respect to the oscillation frequency. This is a stronger feature than the usual so called ''Asymptotic preserving" property, the last being also satisfied by our scheme in the highly oscillatory limit. Our strategy enables to simulate the oscillatory problem without using any mesh or time step refinement, and the orders of our schemes are preserved uniformly in all regimes. In other words, since our numerical method is not based on the derivation and the simulation of asymptotic models, it works in the regime where the solution does not oscillate rapidly, in the highly oscillatory limit regime, and in the intermediate regime with the same order of accuracy. In the same spirit as in \cite{clm}, the method is based on two main ingredients. First, we embed our problem in a suitable ''two-scale" reformulation with the introduction of an additional variable. Then a link is made with classical strategies based on Chapman-Enskog expansions in kinetic theory despite the dispersive context of the targeted equations, allowing to separate the fast time scale from the slow one. Uniformly accurate (UA) schemes are eventually derived from this new formulation and their properties and performances are assessed both theoretically and numerically.
Type de document :
Article dans une revue
Numerische Mathematik, Springer Verlag, 2015, 129 (2), pp.211-250. 〈10.1007/s00211-014-0638-9〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00850092
Contributeur : Nicolas Crouseilles <>
Soumis le : vendredi 2 août 2013 - 16:01:05
Dernière modification le : jeudi 11 janvier 2018 - 06:20:09
Document(s) archivé(s) le : mercredi 5 avril 2017 - 19:14:17

Fichier

cclm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Philippe Chartier, Nicolas Crouseilles, Mohammed Lemou, Florian Méhats. Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations. Numerische Mathematik, Springer Verlag, 2015, 129 (2), pp.211-250. 〈10.1007/s00211-014-0638-9〉. 〈hal-00850092〉

Partager

Métriques

Consultations de la notice

769

Téléchargements de fichiers

134