Generalized Subdifferentials of the Sign Change Counting Function

Dominique Fortin 1 Ider Tseveendorj 2
1 GANG - Networks, Graphs and Algorithms
LIAFA - Laboratoire d'informatique Algorithmique : Fondements et Applications, Inria Paris-Rocquencourt
Abstract : The counting function on binary values is extended to the signed case in order to count the number of transitions between contiguous locations. A generalized subdifferential for the sign change counting function is given where classical subdifferentials remain intractable. An attempt to prove global optimality at some point, for the 4-dimensional first non trivial example, is made by using a sufficient condition specially tailored among all the cases for this subdifferential.
Type de document :
Pré-publication, Document de travail
15 pages, 7 figures, 16 references. 2013
Liste complète des métadonnées

https://hal.inria.fr/hal-00915606
Contributeur : Dominique Fortin <>
Soumis le : lundi 9 décembre 2013 - 09:35:11
Dernière modification le : jeudi 15 novembre 2018 - 20:27:23

Lien texte intégral

Identifiants

  • HAL Id : hal-00915606, version 1
  • ARXIV : 1312.1814

Collections

Citation

Dominique Fortin, Ider Tseveendorj. Generalized Subdifferentials of the Sign Change Counting Function. 15 pages, 7 figures, 16 references. 2013. 〈hal-00915606〉

Partager

Métriques

Consultations de la notice

343