Algorithm Portfolios for Noisy Optimization: Compare Solvers Early

Marie-Liesse Cauwet 1, 2 Jialin Liu 1, 2 Olivier Teytaud 1, 2
1 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : Noisy optimization is the optimization of objective functions corrupted by noise. A portfolio of algorithms is a set of algorithms equipped with an algorithm selection tool for distributing the compu- tational power among them. We study portfolios of noisy optimization solvers, show that different settings lead to dramatically different perfor- mances, obtain mathematically proved adaptivity by an ad hoc selection algorithm dedicated to noisy optimization. A somehow surprising result is that it is better to compare solvers with some lag; i.e., recommend the current recommendation of the best solver, selected from a comparison based on their recommendations earlier in the run.
Type de document :
Communication dans un congrès
Learning and Intelligent Optimization Conference, Feb 2014, Florida, United States. 2014
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-00926638
Contributeur : Jialin Liu <>
Soumis le : vendredi 4 avril 2014 - 10:38:32
Dernière modification le : jeudi 11 janvier 2018 - 06:22:14
Document(s) archivé(s) le : vendredi 4 juillet 2014 - 10:37:10

Fichier

portfolio2_LION8.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00926638, version 1

Citation

Marie-Liesse Cauwet, Jialin Liu, Olivier Teytaud. Algorithm Portfolios for Noisy Optimization: Compare Solvers Early. Learning and Intelligent Optimization Conference, Feb 2014, Florida, United States. 2014. 〈hal-00926638〉

Partager

Métriques

Consultations de la notice

322

Téléchargements de fichiers

421