Time Asymptotics for a Critical Case in Fragmentation and Growth-Fragmentation Equations

Abstract : Fragmentation and growth-fragmentation equations is a family of problems with varied and wide applications. This paper is devoted to description of the long time time asymptotics of two critical cases of these equations, when the division rate is constant and the growth rate is linear or zero. The study of these cases may be reduced to the study of the following fragmentation equation: $$\frac{\partial}{\partial t} u(t,x) + u(t,x)=\int\limits_x^\infty k_0(\frac{x}{y}) u(t,y) dy.$$ Using the Mellin transform of the equation, we determine the long time behavior of the solutions. Our results show in particular the strong dependence of this asymptotic behavior with respect to the initial data.
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01080361
Contributeur : Marie Doumic <>
Soumis le : mardi 13 octobre 2015 - 11:12:33
Dernière modification le : vendredi 31 août 2018 - 09:06:03
Document(s) archivé(s) le : jeudi 27 avril 2017 - 00:15:50

Fichiers

MiMa_KRM_TemplateMa3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Marie Doumic, Miguel Escobedo. Time Asymptotics for a Critical Case in Fragmentation and Growth-Fragmentation Equations. Kinetic and Related Models , AIMS, 2016, 9 (2), pp.47. 〈https://aimsciences.org/journals/displayArticlesnew.jsp?paperID=12370〉. 〈10.3934/krm.2016.9.251〉. 〈hal-01080361v3〉

Partager

Métriques

Consultations de la notice

471

Téléchargements de fichiers

136