Stability and feasibility of state-constrained linear MPC without stabilizing terminal constraints

Abstract : This paper is concerned with stability and recur-sive feasibility of constrained linear receding horizon control schemes without terminal constraints and costs. Particular attention is paid to characterize the basin of attraction S of the asymptotically stable equilibrium. For stabilizable linear systems with quadratic costs and convex constraints we show that any compact subset of the interior of the viability kernel is contained in S for sufficiently large optimization horizon N . An analysis at the boundary of the viability kernel provides a connection between the growth of the infinite horizon optimal value function and stationarity of the feasible sets. Several examples are provided which illustrate the results obtained.
Type de document :
Communication dans un congrès
MTNS 2014, 2014, Los Angeles, United States. pp.453-460, Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems. 〈https://fwn06.housing.rug.nl/mtns2014/〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01098279
Contributeur : Estelle Bouzat <>
Soumis le : mardi 23 décembre 2014 - 15:40:27
Dernière modification le : vendredi 13 octobre 2017 - 17:08:16
Document(s) archivé(s) le : mardi 24 mars 2015 - 10:41:37

Fichier

mtns2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01098279, version 1

Collections

Citation

Andrea Boccia, Lars Grüne, Karl Worthmann. Stability and feasibility of state-constrained linear MPC without stabilizing terminal constraints . MTNS 2014, 2014, Los Angeles, United States. pp.453-460, Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems. 〈https://fwn06.housing.rug.nl/mtns2014/〉. 〈hal-01098279〉

Partager

Métriques

Consultations de la notice

269

Téléchargements de fichiers

201