Stable Constrained Dynamics - Archive ouverte HAL Access content directly
Journal Articles ACM Transactions on Graphics Year : 2015

Stable Constrained Dynamics

(1, 2, 3) , (4) , (5, 2) , (4)
1
2
3
4
5

Abstract

We present a unification of the two main approaches to simulate deformable solids, namely elasticity and constraints. Elasticity accurately handles soft to moderately stiff objects, but becomes numerically hard as stiffness increases. Constraints efficiently handle high stiffness, but when integrated in time they can suffer from instabilities in the nullspace directions, generating spurious transverse vibrations when pulling hard on thin inextensible objects or articulated rigid bodies. We show that geometric stiffness, the tensor encoding the change of force directions (as opposed to intensities) in response to a change of positions, is the missing piece between the two approaches. This previously neglected stiffness term is easy to implement and dramatically improves the stability of inextensible objects and articulated chains, without adding artificial bending forces. This allows time step increases up to several orders of magnitude using standard linear solvers.
Vignette du fichier
knee.jpg (57.01 Ko) Télécharger le fichier Fichier principal
Vignette du fichier
StableConstraints_siggraph15.pdf (3.26 Mo) Télécharger le fichier
Vignette du fichier
Logo-Web-cartouche-bleu-png.png (313.21 Ko) Télécharger le fichier
Vignette du fichier
StableConstraints_siggraph15.mp4 (25.42 Mo) Télécharger le fichier
Format : Figure, Image
Origin : Files produced by the author(s)
Origin : Files produced by the author(s)
Format : Figure, Image
Origin : Files produced by the author(s)
Format : Video
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01157835 , version 1 (28-05-2015)
hal-01157835 , version 2 (09-02-2017)

Identifiers

Cite

Maxime Tournier, Matthieu Nesme, Benjamin Gilles, François Faure. Stable Constrained Dynamics. ACM Transactions on Graphics, 2015, Proceedings of SIGGRAPH, 34 (4), pp.132:1--132:10. ⟨10.1145/2766969⟩. ⟨hal-01157835v2⟩
3097 View
5312 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More