MATHEMATICS IN PHYSICS - Inria - Institut national de recherche en sciences et technologies du numérique Accéder directement au contenu
Ouvrage (Y Compris Édition Critique Et Traduction) Année : 2016

MATHEMATICS IN PHYSICS

Jean Claude Dutailly
  • Fonction : Auteur
  • PersonId : 910298

Résumé

This book proposes a review and, on some important points, a new interpretation of the main concepts of Theoretical Physics. Rather than offering an interpretation based on exotic physical assumptions (additional dimension, new particle, cosmological phenomenon,…) or a brand new abstract mathematical formalism, it proceeds to a systematic review of the main concepts of Physics, as Physicists have always understood them : space, time, material body, force fields, momentum, energy… and propose the right mathematical tools to deal with them, chosen among well known mathematical theories. After a short introduction about the place of Mathematics in Physics, a new interpretation of the main axioms of Quantum Mechanics is proposed. It is proven that these axioms come actually from the way mathematical models are expressed, and this leads to theorems which validate most of the usual computations and provide safe and clear conditions for their use, as it is shown in the rest of the book. Relativity is introduced through the construct of the Geometry of General Relativity, based on 5 propositions and the use of tetrads and fiber bundles, which provide tools to deal with practical problems, such as deformable solids. A review of the concept of momenta leads to the introduction of spinors in the framework of Clifford algebras. It gives a clear understanding of spin and antiparticles. The force fields are introduced through connections, in the, now well known, framework of gauge theories, which is here extended to the gravitational field. It shows that this field has actually a rotational and a transversal component, which are masked under the usual treatment by the metric and the Levy-Civita connection. A thorough attention is given to the topic of the propagation of fields with interesting results, notably to explore gravitation. The general theory of lagrangians in the application of the Principle of Least Action is reviewed, and two general models, incorporating all particles and fields are explored, and used for the introduction of the concepts of currents and energy-momentum tensor. Precise guidelines are given to find operational solutions of the equations of the gravitational field in the most general case. The last chapter shows that bosons can be understood as discontinuities in the fields. In this 4th version of this book, changes have been made : - in Relativist Geometry : the ideas are the same, but the chapter has been rewritten, notably to introduce the causal structure and explain the link with the practical measures of time and space; - in Spinors : the relation with momenta has been introduced explicitly - in Force fields : the section dedicated to the propagation of fields is new, and is an important addition. - in Continuous Models : the section about currents and energy-momentum tensor are new. - in Discontinuous Processes : the section about bosons has been rewritten and the model improved.
Fichier principal
Vignette du fichier
MathematicsInPhysics-v8-publi.pdf (2.87 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01169985 , version 1 (30-06-2015)
hal-01169985 , version 2 (26-08-2015)
hal-01169985 , version 3 (02-02-2016)

Identifiants

  • HAL Id : hal-01169985 , version 3

Citer

Jean Claude Dutailly. MATHEMATICS IN PHYSICS. pp.380, 2016. ⟨hal-01169985v3⟩

Collections

TDS-MACS
687 Consultations
641 Téléchargements

Partager

Gmail Facebook X LinkedIn More