Compact Brownian surfaces I. Brownian disks - Inria - Institut national de recherche en sciences et technologies du numérique Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2015

Compact Brownian surfaces I. Brownian disks

Résumé

We show that, under certain natural assumptions, large random plane bipartite maps with a boundary converge after rescaling to a one-parameter family (BD_L, 0 < L < infinity) of random metric spaces homeomorphic to the closed unit disk of R^2, the space BD_L being called the Brownian disk of perimeter L and unit area. These results can be seen as an extension of the convergence of uniform plane quadrangulations to the Brownian map, which intuitively corresponds to the limit case where L = 0. Similar results are obtained for maps following a Boltzmann distribution, in which the perimeter is fixed but the area is random.
Fichier principal
Vignette du fichier
br_disk_submitted.pdf (788.31 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01182224 , version 1 (30-07-2015)
hal-01182224 , version 2 (20-10-2015)
hal-01182224 , version 3 (12-02-2016)

Identifiants

Citer

Jérémie Bettinelli, Gregory Miermont. Compact Brownian surfaces I. Brownian disks. 2015. ⟨hal-01182224v2⟩

Collections

IECN UNIV-LORRAINE
272 Consultations
110 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More