Convergence to the coalescent and its relation to the time back to the most recent common ancestor

Abstract : For the class of haploid exchangeable population models with non-overlapping generations and population size $N$ it is shown that, as $N$ tends to infinity, convergence of the time-scaled ancestral process to Kingman's coalescent and convergence in distribution of the scaled times back to the most recent common ancestor (MRCA) to the corresponding times back to the MRCA of the Kingman coalescent are equivalent. Extensions of this equivalence are derived for exchangeable population models being in the domain of attraction of a coalescent process with multiple collisions. The proofs are based on the property that the total rates of a coalescent with multiple collisions already determine the distribution of the coalescent. It is finally shown that similar results cannot be obtained for the full class of exchangeable coalescents allowing for simultaneous multiple collisions of ancestral lineages, essentially because the total rates do not determine the distribution of a general exchangeable coalescent.
Type de document :
Communication dans un congrès
Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.311-324, 2008, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01194673
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 7 septembre 2015 - 12:50:56
Dernière modification le : mercredi 10 mai 2017 - 17:41:12
Document(s) archivé(s) le : mardi 8 décembre 2015 - 11:05:14

Fichier

dmAI0120.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01194673, version 1

Collections

Citation

Martin Möhle. Convergence to the coalescent and its relation to the time back to the most recent common ancestor. Roesler, Uwe. Fifth Colloquium on Mathematics and Computer Science, 2008, Kiel, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AI, Fifth Colloquium on Mathematics and Computer Science, pp.311-324, 2008, DMTCS Proceedings. 〈hal-01194673〉

Partager

Métriques

Consultations de la notice

137

Téléchargements de fichiers

146